THERMAL PROCESSES AT THE ANODE DURING AN
INTENSE PULSED DISCHARGE

A. G. Goloveiko UDC 537.50

The thermal processes during the initial and subsequent stages of the pulse are discussed on
the basis of an account of surface evaporation and all the heat sources acting at the anode.

The operation of the anode in an electric discharge is simpler than that of the cathode, primarily be-
cause the anode does not emit any charged particles, but merely acts as an electron collector. The role of
the anode is less important than that of the cathode in developing and maintaining the discharge.

Among studies of anode operation, those by Bez and Hocker occupy a special position {1-5]. Their
theory of the elementary processes in the region of the anodic potential drop is in satisfactory agreement
with experiment, and is generally accepted [6]. For an intense pulsed discharge, this theory leads to the
following expression for the electronic heat flux density transferred to the anode:

Fo=(eq +elpt+ 2%T) - =(+0+ 0§ M

For Ug = Uj, the ratio w lies in the range 1.6-2.6 for various metals, while the coefficient X may take
on values in the range 0.4-1.9 for Te =~ (1-4) -102°K. The quantity (1 + ¢ + X)¢' may vary within the range
5-10G V.

An intense pulsed discharge is accompanied by the passage of a discharge current of extremely high
density through the electrodes and by the appearance of large temperature gradients there. Under such
conditions, the thermal processes should be analyzed onthe basis ofa heat-conductivity equation taking into
account Lenz-Joule and Thomson volume heat sources. Following Landau and Lifshits {7], we write this
equation in the following form:
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where we have chosen the sense of j so that it is parallel to the electronic current.

The guantity o which appears in (2) has been interpreted on the basis of the quantum theory of metals;
with certain simplifications,it may be written, as Ioffe has shown [8], in the following manner:

a = n®k*T/ee, 3)
Substituting (3) into (2), we find
4, T) . . wR -
g = VAYT) + - Tiv T+ (4)

Eguation (4) is extremely complicated, and cannot be solved unless certain plausible assumptions are
made to linearize it. If we focus on the process at the initial stage of the pulse, before the melting point
is reached, then it is completely plausible to consider only average values of quantities ¢y, A, and p in this
temperature range. Furthermore, using the Wiedemann —Franz law for the temperature (T = ApLo™!), and
using the notation
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we can convert Eq. (4) into the simpler form
or

—at—zaAT-{—bujvT—}—ujz, (6)

where A and V are the Laplace and Hamiltonian differential operators.

In the one-dimensional approximation, the electronic current density and the temperature gradient are
antiparallel for the anode, so Eq. (6) yields
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A uniform current-density distribution has been assumed here in the semiinfinite region (0 = x' = ) in
order to increase the efficiency of the Lenz—Joule heat source in raising the temperature right at the anode
surface. During the initial stage of the pulse, when there is essentially no evaporation, the following con-
ditions hold at the anode:
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Initially, we have T(x', 0) = Ty = 285°K.
The problem (7), (8) can be written in the dimensionless form
2
LT N TN Y LI B o)
dt (133 0%
26(0, 1) 30 (00, 1)
——e™ == — (], ——~——=0, 6 ,0=0, 10
3% ot & 0 (10)
where
E= Agjxlr T= Awizf» g= Aq(l + a4y (Plr
T, H—T, ./ u . u
0 V= —p-—7 0 & 'l/ iTp—Tg " = T Ty (11)

a
A, = ‘/m\_—:ﬂ , B=Asb (Tmp— Ty).

The metal characteristics appearing in these similarity criteria are shown in the accompanying Table 1.

Along with Eq. (9), we should discuss two other equations, with the same initial and boundary condi~
tions (10): ‘
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Here we have eliminated the Thomson heat source from the first equation and both the Thomson and Lenz
—Joule sources from the second.

The problem (13), (10) determines the temperature field which arises at the anode as a result of the
surface heat source alone. The temperature at the anode surface according to this problem is given by

00, 1) = 2V , (14)

V'm
from which we find the instant 7y at which the melting point is reached 6(0, 1) = 1:

To = —= . (15)
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TABLE 1. Critical Constants of Certain Metals

Ay, m* -1
Metal | T | AD m/A | Ag, v. B
cd  |2,58.1071% | 3,38.107° | 10,86 | 9,98-1072
Zn 9,80.1077 | 1,61-107 | 12,90 | 2,76-1072
Al 4,10.10717 | 7,10:107 | 10,00 | 3,72.107
Cu 1,37-10717 | 3,94.1077 6,96 | 5,72.1072
W 5,23-10718 | 1,23.1076 1,76 | 2,70-107¢

The data shown in the accompanying Table 1 show that the quantity 7, is extremely small (7 < 1) for any
possible values of the quantity (1 + w + X)¢!'.

The problem (12}, (10) determines the temperature field which arises at the anode as a result of the

combined effects of the surface and Lenz —Joule volume heat sources, but without the Thomson source.
The temperature at the anode surface, according to this problem, is given by

00, 1= 291" 4o (16)

1
If, as before, we consider the process at time 7y, given by Eq. (15), then the difference between temperatures
{16) and (14),
A91 (O, To) = Tp (17)

gives the additional temperature increase caused by the Lenz —Joule heat source at time 7. When 1) < 1,
we find A6;{0, 7¢) < 1;1i.e.,the additional temperature increase is much less than the melting point. This
means that this heat source is inefficient during the initial stage of the process for any pulse conditions.

The problem (9), (10) determines the temperature field which arises at the anode during the combined
operation of all three heat sources, including the Thomson source. The temperature at the anode surface
according to this problem is given by

B\ f B\
%1 T N\ (=1 (7) v By ® Y =1 (?) v B
g T \ a1 7 qt
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When 7 «< 1, we may limit this discussiontothe zeroth approximation:
8(0, 1) 2417 4 BIT (1+-23Vf )+T. (19)
|14 2 3 1/ I
The difference between temperatures (19) and (16) at time T7¢,
86,0, %) = 24™ <1+ 2By f") (20)
2 31 m

determines the additional temperature increase due to the Thomson heat source. Since 7; «< 1, we see from
the tabulated data that A8,(0, Ty < 1;i.e., the increased temperature is again much less than the melting
point. This means that the Thomson heat source is also inefficient under any pulse conditions during the
initial stage of the process.

Accordingly, the predominant heat source is the surface source; this is true during the initial stage
of the process regardless of the pulse conditions at the anode. However, there is no basis for extending this
conclusion to the subsequent stages of the process, during which an intense surface evaporation will arise
as the anode surface becomes hotter.

This evaporation causes an important change in the energetic balance at the boundary, causing the
latter to move very rapidly; the power loss through evaporation and the velocity of the evaporation front
are given by [9-11]

T,
= f) = F I
F,=ruo() oexp[ T, t)]
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where T(0, t) is the temperature of the front whose coordinate is specified in a moving coordinate system
tied to the front itself:

Xx=x — gt v (f) dt. (22)

6

The thermal problem for the anode during the subsequent stage of the pulse can be written in terms of this
moving coordinate system as follows:

aT (x, 1) COT (x, 8) aT (x, ©) "
=g u(t -+ uj exp(— 8§ x), 23
p P + () s j* exp ( ) (23)
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9T (o0, #) =0, T(x, 0) =T,

0x
where j is the current density at the surface of the anode spot, and u is given by

w=umpl4+a,[T(0, f) — Tmpl }. (25)

This problem takes into account only the Lenz—Joule volume heat source. The spatial distribution of
the intensity of this heat source in this one-dimensional problem is expressed in terms of the intensity at the
evaporation front by means of the approximate distribution function exp (—6x), where the parameter 6 is
the reciprocal of the characteristic length for the process or of the depth of the microscopic holesé ~h™1,
which can be determined experimentally. The relation established between the volume heat source and the
characteristic dimensions of the process, and the comparatively reliable expression for the intensity of
the source at the evaporation front, constitute the most important elements in this approximation; they play
the governing role in the process. The approximation can be refined even further, but this is not necessary
here.

Problem (23), (24) is nonlinear and has no analytic solution. A computer solution has been found for
a uniform volume-source distribution (6 = 0) [10, 11]. It turns out that at high current densities the high-
temperature field excited by the surface heat source develops in an extremely thin surface layer, reaching a
nearly steady state essentially instantaneously, especially at the evaporation front; the additional tempera-
ture increase due to the volume source lags behind considerably. Accordingly, the process may be treated
in a somewhat different manner, under the assumption that the steady-state temperature and front velocity,
T(0,t) = T and v(t) = v, arise instantaneously at the start of the process, and then are stably maintained,
while transient phenomena occur everywhere except at the evaporation front itself.

This formulation of the problem corresponds to

oT (x, t) 0T (x, ©) T (x, ©) .
P =q ¥ + v P + uj®exp (— 6 x), (26)
TO =T, T(», =T, T(x, 0) =T, (27)
which, after conversion to dimensionless form,
d0E, v) _ 8%6( 1) L 040G 7
= ' — BE), 2

- e Tl (28)
00, 1)=1, 6(c0, 1) =0, 8(¢, 0) =0 (29

may be solved by an integral Laplace transformation:

0 (&, T)=% exp (— E) erfc (L—— TT)-{——; erfc( g, + ! ;)—% exp [—( Jllﬁ —l—i) E]

2Vr 2 217 2 VY 2
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where

v vx T —7T,
T= —; = — [} , = e —
P g p E 7 T,
uaj® ad 1 1)
b= ST —Ty b= w=PF0-B) v=—"—m

This solution is interesting because it contains information about the duration of the transient process.
Equation (30) shows that the temperature 6(§, 7)begins tolose its time dependence aty;7 > 1. From this con-
dition, and according to (31), the transition time can be evaluated:

t >0 (v—ad)l?, (32)
where v > a6.

When the process reaches a steady state, the problem (26), (27), with a boundary condition of the first

kind, and problem (23), (24), with a boundary condition of the second kind, convert into the same steady-state
problem: '

2
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whose solution can be written
\ . 12
T = umpl + o, (T — Tmpl§ [exp(—ﬁx) —exp (___ff‘_” + (T — To) exp (__ K) + Ty, (36)
d(v—abd) a a
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We introduce the following notation for the terms on the right side of this latter equation:

[ 24
(+o+0e¢j=F, —sLlta,(—Tplf=F, (38)

and we congider the most important steady-state cases for the process.

1. We assume Fy; < Fg and v < ¢§; then it follows from (36) that

T(x) 2 (T — To) exp (— %) + T, (39)

which shows that the volume heat source is completely ineffective when the steady-state regime is not lim-
ited in time. Specifying v = 107%ad, we find from Fg + Fy = Fg and Eq. (37) the current density correspond-
ing to these conditions:
[ ad
10(1+0+90¢

2. We assume Fg = Fy or that the surface volume and heat sources are equivalent. Eliminating the
temperature from Eq. (37) on the basis of Fe = Fy, we find the following transcendental equation for the
corresponding current density j™:

{q_+cv(7;1n4~%%i-—75)]. (40)

" i -~ ”
exp | —r—u | (" =D, 41
I exp ( A,,~B,,I.,,) i (41)
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Since Fe ~ j and Fy ~ j%, the equality Fe = Fy should be violated onboth sides of j". Whenj > j",we also have
Fy > Fe under the same condition, v > ad, so it follows from Eq. (36) that
i2
T~ 4 exp(— 8%+ To, (43)
vd
for the electrode regions where x > a/v; this shows the predominance of the volume heat source and the
complete independence of the temperature field from the thermal conductivity of the metal.

3. With j* as the current density at which the temperature gradient at the evaporation front vanishes,
and after the temperature is eliminated from Egs. (34) and (37), the following transcendental equation is
found for this current density:

E3
(A* + B*j*) In % + D*j* = E*, (44)

where
A* = (140 + 00 Tory; B* =updfl—a, Tmp &7,
C*=Fol(l+ o+ 0T, D*=unp, T, 87, (485)
E¥=(0+o+0¢ T

Physically, the current density j* has the following meaning: when j < j*, the heat flux still penetrates
through the evaporation front and into the depth of the electrode; when j = j*, this process stops; and when
j > j*, the heat flux moves in the opposite direction, from the electrode to the evaporation front. In this
latter case, the temperature within the electrode exceeds that at the front; i.e., volume superheating oc-
curs.

Calculations on the basis of handbook data [12-14] for the quantities appearing in Egs. (40), (41), and
(44) show that the current density j" is greater than j' by 1.5-2 orders of magnitude and differs only
very slightly from j*. It is therefore sufficient to use the data only for the current density j*; this should be
done for two regimes, with the surface heat source predominant in one and the volume heat source pre-
dominant in the second. Practical examples of such regimes are

L(ltot+ye =10V §=10m Y h=104
I (4 0o +yx¢ =5V 8§=510mY; h =20y

For such metals as Cu, Sn, and Pb, j* values of 7.50-10", 3.20-107, and 2.50 -10" A/cm? correspond
to the first regime, and values of 1.66 -107, 8.00-108, and 5.10 -10° A /cm? correspond to the second. These
data show that anode conditions (regime II) under which the volume heat source would be predominant at
not too high a current density are completely plausible. Such an effect would be in principle impossible at
any current density at the initial stage of the pulse but here the effect may ocecur and is a direct conse-
quence of intense surface evaporation.

According to Eqs. (34) and (32), the steady-state front velocity and the transition time for j = j* can
be evaluated from

v* = (1 + o0+ %9 j*ry (46)
te>r, 81+ 0+ ¢ j*—adr, )|t =t (47)

For the same metals (Cu, Sn, and Pb), v* values of 153, 164, and 234 m/sec correspond to the first
regime, while values of 16.9, 20.5, and 24.0 m/sec correspond to the second. In other words, the velocity
falls off by roughly an order of magnitude at the transition from the first to the second regime. The transi-
tion time, on the other hand, increases abruptly: for these metals the t* values of 6.95-10~%, 6.20 -1075,
and 3.45 1078 sec correspond to the first regime, while values of 1.62-107%, 1.01-107¢, and 8.70 -1077 sec
correspond to the second. However, the transition in the second case is completed quite rapidly in com-
parison with the total duration of pulses achievable in practice.

The steady-state role of the Thomson heat source can be determined from the heat-conductivity equa-
tion
a&°T (x) Sx\1 dT (»)

a i - [v — buj exp (— —~»—ﬂ “d + ui*exp (— 8 x) =0, (48)
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which can be found from (7) on the basis of (22) under the assumption that the current density distribution
corresponds to the approximate distribution adopted for the intensity of the Lenz —Joule heat source. In
this equation, the inequality

v > buj, (49)

holds, so Eq. (48) may be replaced by Eq. (33), and the Thomson heat source is seen to be ineffective in the
steady state.

o =3 O U & W N M
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11.
12.
13.

14.
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NOTATION

is the electronic charge;

is the work function;

is the jonization potential for the anode atoms;

is the anodic potential drop;

is the Boltzmann constant;

is the electronic plasma temperature in the region of the anodic potential drop;
is the anodic current density at the anode surface;

is the electron energy at the Fermi level;

is the thermal conductivity of the electrode;

is the specific heat capacity of the electrode material at constant volume;

is the resistivity of the electrode;

is the Lorentz number;

is the specific volume heat of vaporization of the electrode material;

is the velocity of sound in the electrode material;

is the value of u (5) for the liquid phase of the electrode at the melting point;

is the temperature coefficient for a linear change of u in the liquid state of the metal;

_is the melting point of the electrode.
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